
What is the electron spin?
The electron
spin is the electron’s
electromagnetic field angular momentum
Nuclear Cubic Structure
In
1891, the Irish physicist, George Stoney, believed that electricity
should have a fundamental unit. He called this unit the electron.
As is commonly known, the hydrogen atom is the smallest atom that exists in nature. The mass ratio between an electron and a hydrogen atom is approximately 1:1836. From this numerical comparison, it is evident that the mass of an electron is much smaller than that of a hydrogen atom. Besides its electric charge and mass, an electron has one more key property, which is called “electron spin.?Just as the earth rotates around its axis, the electron is also constantly “spinning.? The concept of electron spin was discovered by S.A.
Goudsmit and George Uhlenbeck in 1925. The electron has three basic properties: electric charge, mass and spin. As far as we can understand, electron spin is the electron’s intrinsic angular momentum. As far as we can tell, the electron is still regarded as a point like particle, with no internal structure and no physical size. How can a point particle, without any physical size, spin and have intrinsic angular momentum? The spinning of the point particle is meaningless. What matters is where the intrinsic angular momentum originates from inside the electron. There are many people who believe that an electron’s mass may have an electromagnetic origin. Is there a possibility then that the electron spin also has an electromagnetic origin? The book
“What Is the Electron Spin? tries to answer this
question. This book is based on the assumption that the electron
spin has an electromagnetic origin. That is, the electron’s intrinsic
angular momentum results from an electromagnetic field. Because the electron has an intrinsic angular momentum,
we know that the electron
must have an intrinsic magnetic field. Similar to a magnetic dipole
field, the electron is nature’s
smallest magnet. As is commonly known, the electromagnetic field can have energy and momentum as well as angular momentum. “What Is the Electron Spin??makes a basic assumption that the electron itself has an electromagnetic origin. It then extends that theory to all of the electron’s properties, such as mass and spin, claiming they have an electromagnetic origin as well. For example, an electron’s selfenergy comes from its electromagnetic field energy, and the electron spin is the angular momentum of the electron’s electromagnetic field. The first point this book attempts to make is that the electron is no longer regarded as a point particle. Rather, it purports that there is a continuum spherical distribution of both electric and magnetic charges inside the electron. Chapter 1 is an introduction to the book and illustrates a simple electron spin model. Chapter 2 introduces a single mathematical equation to describe how the electric charge is distributed inside the electron. Chapter 3 introduces another mathematical equation, this one describing how the magnetic charge is distributed inside the electron. Expanding upon the principles outlined in Chapters 2 and 3, Chapters 4 and 5 provide a solution to the electric and magnetic field distribution equations inside the electron. Chapter 6 sets forth the notion that electron spin is the angular momentum of the electron’s electromagnetic field. Chapters 7 through 9 explain the theory that the electron’s selfenergy comes from its electromagnetic field energy. Chapters 10 through 15 discuss the conservation laws surrounding electric charges, magnetic charges and electromagnetic energy. Chapters 16 through 19 extend the electron’s electromagnetic model to that of the proton, the neutron and hydrogen and helium atoms. Within these chapters, the book goes on to make the claim that it’s not only an electron that has an electromagnetic origin, but all of the fundamental particles as well. Chapters 20 through 23 of this book discuss the electromagnetic wave inside the electron. They also provide a possible solution to the hydrogen atom spectrum, setting it forth as a hydrogen atom electromagnetic stationary wave spectrum. The last chapter, Chapter 24, discusses the symmetrical relationship between timespace and energymomentum. Here are
some key conclusions that can be drawn from this book:
Book's back cover:

2.
The electric charge distribution inside of the electron
3. The magnetic charge distribution inside of the electron
4.
The electric field inside of the electron
5.
The magnetic field inside of the electron
6.
The
electromagnetic field angular momentum of the electron
7.
The electric field energy of the electron
8.
The magnetic field energy of the electron
9.
The electromagnetic field energy of the electron
10.
The velocity of the electromagnetic field
11.
The conservation of electric charge
12. The conservation of magnetic charge
13. The electromagnetic field equation
14. The electromagnetic
field equation in complex form
15.
The conservation of energy
16. The electromagnetic model of the proton
17.The electromagnetic model of the hydrogen atom
18.
The electromagnetic
model of the neutron
19. The electromagnetic model of helium atom
20. The electromagnetic characteristic impedance
21. The electromagnetic wave
22. The electron impedance
23. The hydrogen atom spectrum
24. Timespace and energymomentum
Appendix
AppendixA
AppendixB
AppendixC
AppendixD
AppendixE
What
is the electron spin?
ISBN 0974397490 Copyright ?2003 Gengyun Li All rights reserved http://www.electronspin.org 